41 research outputs found

    Fourier expansions of Kac-Moody Eisenstein series and degenerate Whittaker vectors

    Get PDF
    Motivated by string theory scattering amplitudes that are invariant under a discrete U-duality, we study Fourier coefficients of Eisenstein series on Kac-Moody groups. In particular, we analyse the Eisenstein series on E9(R)E_9(R), E10(R)E_{10}(R) and E11(R)E_{11}(R) corresponding to certain degenerate principal series at the values s=3/2 and s=5/2 that were studied in 1204.3043. We show that these Eisenstein series have very simple Fourier coefficients as expected for their role as supersymmetric contributions to the higher derivative couplings R4R^4 and ∂4R4\partial^{4} R^4 coming from 1/2-BPS and 1/4-BPS instantons, respectively. This suggests that there exist minimal and next-to-minimal unipotent automorphic representations of the associated Kac-Moody groups to which these special Eisenstein series are attached. We also provide complete explicit expressions for degenerate Whittaker vectors of minimal Eisenstein series on E6(R)E_6(R), E7(R)E_7(R) and E8(R)E_8(R) that have not appeared in the literature before.Comment: 62 pages. Journal versio

    Playing it safe: information constrains collective betting strategies

    Full text link
    Every interaction of a living organism with its environment involves the placement of a bet. Armed with partial knowledge about a stochastic world, the organism must decide its next step or near-term strategy, an act that implicitly or explicitly involves the assumption of a model of the world. Better information about environmental statistics can improve the bet quality, but in practice resources for information gathering are always limited. We argue that theories of optimal inference dictate that ``complex'' models are harder to infer with bounded information and lead to larger prediction errors. Thus, we propose a principle of ``playing it safe'' where, given finite information gathering capacity, biological systems should be biased towards simpler models of the world, and thereby to less risky betting strategies. In the framework of Bayesian inference, we show that there is an optimally safe adaptation strategy determined by the Bayesian prior. We then demonstrate that, in the context of stochastic phenotypic switching by bacteria, implementation of our principle of ``playing it safe'' increases fitness (population growth rate) of the bacterial collective. We suggest that the principle applies broadly to problems of adaptation, learning and evolution, and illuminates the types of environments in which organisms are able to thrive.Comment: 23 pages, 10 figure

    Eisenstein series and automorphic representations

    Full text link
    We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adeles A, thereby also paving the way for connections to number theory, representation theory and the Langlands program. Most of the results we present are already scattered throughout the mathematics literature but our exposition collects them together and is driven by examples. Many interesting aspects of these functions are hidden in their Fourier coefficients with respect to unipotent subgroups and a large part of our focus is to explain and derive general theorems on these Fourier expansions. Specifically, we give complete proofs of the Langlands constant term formula for Eisenstein series on adelic groups G(A) as well as the Casselman--Shalika formula for the p-adic spherical Whittaker function associated to unramified automorphic representations of G(Q_p). In addition, we explain how the classical theory of Hecke operators fits into the modern theory of automorphic representations of adelic groups, thereby providing a connection with some key elements in the Langlands program, such as the Langlands dual group LG and automorphic L-functions. Somewhat surprisingly, all these results have natural interpretations as encoding physical effects in string theory. We therefore also introduce some basic concepts of string theory, aimed toward mathematicians, emphasising the role of automorphic forms. In particular, we provide a detailed treatment of supersymmetry constraints on string amplitudes which enforce differential equations of the same type that are satisfied by automorphic forms. Our treatise concludes with a detailed list of interesting open questions and pointers to additional topics which go beyond the scope of this book.Comment: 326 pages. Detailed and example-driven exposition of the subject with highlighted applications to string theory. v2: 375 pages. Substantially extended and small correction

    On fundamental domains and volumes of hyperbolic Coxeter-Weyl groups

    Full text link
    We present a simple method for determining the shape of fundamental domains of generalized modular groups related to Weyl groups of hyperbolic Kac-Moody algebras. These domains are given as subsets of certain generalized upper half planes, on which the Weyl groups act via generalized modular transformations. Our construction only requires the Cartan matrix of the underlying finite-dimensional Lie algebra and the associated Coxeter labels as input information. We present a simple formula for determining the volume of these fundamental domains. This allows us to re-produce in a simple manner the known values for these volumes previously obtained by other methods.Comment: v2: to be published in Lett Math Phys (reference added, typo corrected

    Eisenstein series for infinite-dimensional U-duality groups

    Get PDF
    We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E_n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E9, E10 and E11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D<3 space-time dimensions.Comment: 69 pages. v2: Added references and small additions, to be published in JHE

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    Bronze IHES Logo Plaque

    No full text
    A bronze dedication plaque from the Institut Hautes des Etudes Scientifique (IHES) documenting the name of the sculptorhttps://orb.binghamton.edu/mathematical_sculptures/1384/thumbnail.jp
    corecore